Example for weekly data

This is a basic example for weekly data using Silverkite. Note that here we are fitting a few simple models and the goal is not to optimize the results as much as possible.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
 import warnings
 from collections import defaultdict

 import plotly
 import pandas as pd

 from greykite.common.constants import TIME_COL
 from greykite.common.constants import VALUE_COL
 from greykite.framework.benchmark.data_loader_ts import DataLoader
 from greykite.framework.input.univariate_time_series import UnivariateTimeSeries
 from greykite.framework.templates.autogen.forecast_config import EvaluationPeriodParam
 from greykite.framework.templates.autogen.forecast_config import ForecastConfig
 from greykite.framework.templates.autogen.forecast_config import MetadataParam
 from greykite.framework.templates.autogen.forecast_config import ModelComponentsParam
 from greykite.framework.templates.forecaster import Forecaster
 from greykite.framework.utils.result_summary import summarize_grid_search_results

 warnings.filterwarnings("ignore")

Loads weekly dataset into UnivariateTimeSeries.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
 dl = DataLoader()
 agg_func = {"count": "sum"}
 df = dl.load_bikesharing(agg_freq="weekly", agg_func=agg_func)
 # In this dataset the first week and last week's data are incomplete, therefore we drop it
 df.drop(df.head(1).index,inplace=True)
 df.drop(df.tail(1).index,inplace=True)
 df.reset_index(drop=True)
 ts = UnivariateTimeSeries()
 ts.load_data(
     df=df,
     time_col="ts",
     value_col="count",
     freq="W-MON")
 print(ts.df.head())

Out:

                   ts     y
2010-09-27 2010-09-27  2801
2010-10-04 2010-10-04  3238
2010-10-11 2010-10-11  6241
2010-10-18 2010-10-18  7756
2010-10-25 2010-10-25  9556

Exploratory Data Analysis (EDA)

After reading in a time series, we could first do some exploratory data analysis. The UnivariateTimeSeries class is used to store a timeseries and perform EDA.

A quick description of the data can be obtained as follows.

55
56
 print(ts.describe_time_col())
 print(ts.describe_value_col())

Out:

{'data_points': 466, 'mean_increment_secs': 604800.0, 'min_timestamp': Timestamp('2010-09-27 00:00:00'), 'max_timestamp': Timestamp('2019-08-26 00:00:00')}
count       466.000000
mean      53466.961373
std       24728.824016
min        2801.000000
25%       32819.750000
50%       51921.500000
75%       76160.750000
max      102350.000000
Name: y, dtype: float64

Let’s plot the original timeseries. (The interactive plot is generated by plotly: click to zoom!)

61
62
 fig = ts.plot()
 plotly.io.show(fig)

Exploratory plots can be plotted to reveal the time series’s properties. Monthly overlay plot can be used to inspect the annual patterns. This plot overlays various years on top of each other.

68
69
70
71
72
73
74
75
76
77
78
79
80
 fig = ts.plot_quantiles_and_overlays(
     groupby_time_feature="month",
     show_mean=True,
     show_quantiles=False,
     show_overlays=True,
     center_values=True,
     overlay_label_time_feature="year",  # splits overlays by year
     overlay_style={"line": {"width": 1}, "opacity": 0.5},
     xlabel="Month",
     ylabel=ts.original_value_col,
     title="Yearly seasonality by year (centered)",
 )
 plotly.io.show(fig)

Weekly overlay plot.

84
85
86
87
88
89
90
91
92
93
94
95
96
 fig = ts.plot_quantiles_and_overlays(
     groupby_time_feature="woy",
     show_mean=True,
     show_quantiles=False,
     show_overlays=True,
     center_values=True,
     overlay_label_time_feature="year",  # splits overlays by year
     overlay_style={"line": {"width": 1}, "opacity": 0.5},
     xlabel="Week of year",
     ylabel=ts.original_value_col,
     title="Yearly seasonality by year (centered)",
 )
 plotly.io.show(fig)

Fit Greykite Models

After some exploratory data analysis, let’s specify the model parameters and fit a Greykite model.

Specify common metadata.

105
106
107
108
109
110
111
112
 forecast_horizon = 4  # Forecast 4 weeks
 time_col = TIME_COL  # "ts"
 value_col = VALUE_COL  # "y"
 metadata = MetadataParam(
     time_col=time_col,
     value_col=value_col,
     freq="W-MON",  # Optional, the model will infer the data frequency
 )

Specify common evaluation parameters. Set minimum input data for training.

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
 cv_min_train_periods = 52 * 2
 # Let CV use most recent splits for cross-validation.
 cv_use_most_recent_splits = True
 # Determine the maximum number of validations.
 cv_max_splits = 6
 evaluation_period = EvaluationPeriodParam(
     test_horizon=forecast_horizon,
     cv_horizon=forecast_horizon,
     periods_between_train_test=0,
     cv_min_train_periods=cv_min_train_periods,
     cv_expanding_window=True,
     cv_use_most_recent_splits=cv_use_most_recent_splits,
     cv_periods_between_splits=None,
     cv_periods_between_train_test=0,
     cv_max_splits=cv_max_splits,
 )

Let’s also define a helper function that generates the model results summary and plots.

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
 def get_model_results_summary(result):
     """Generates model results summary.

     Parameters
     ----------
     result : `ForecastResult`
         See :class:`~greykite.framework.pipeline.pipeline.ForecastResult` for documentation.

     Returns
     -------
     Prints out model coefficients, cross-validation results, overall train/test evalautions.
     """
     # Get the useful fields from the forecast result
     model = result.model[-1]
     backtest = result.backtest
     grid_search = result.grid_search

     # Check model coefficients / variables
     # Get model summary with p-values
     print(model.summary())

     # Get cross-validation results
     cv_results = summarize_grid_search_results(
         grid_search=grid_search,
         decimals=2,
         cv_report_metrics=None,
         column_order=[
             "rank", "mean_test", "split_test", "mean_train", "split_train",
             "mean_fit_time", "mean_score_time", "params"])
     # Transposes to save space in the printed output
     print("================================= CV Results ==================================")
     print(cv_results.transpose())

     # Check historical evaluation metrics (on the historical training/test set).
     backtest_eval = defaultdict(list)
     for metric, value in backtest.train_evaluation.items():
         backtest_eval[metric].append(value)
         backtest_eval[metric].append(backtest.test_evaluation[metric])
     metrics = pd.DataFrame(backtest_eval, index=["train", "test"]).T
     print("=========================== Train/Test Evaluation =============================")
     print(metrics)

Fit a simple model without autoregression. The the most important model parameters are specified through ModelComponentsParam. The extra_pred_cols is used to specify growth and annual seasonality Growth is modelled with both “ct_sqrt”, “ct1” for extra flexibility as we have longterm data and ridge regularization will avoid over-fitting the trend. The yearly seasonality is modelled using Fourier series. In the ModelComponentsParam, we can specify the order of that - the higher the order is, the more flexible pattern the model could capture. Usually one can try integers between 10 and 50.

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
 autoregression = None
 extra_pred_cols = ["ct1", "ct_sqrt", "ct1:C(month, levels=list(range(1, 13)))"]

 # Specify the model parameters
 model_components = ModelComponentsParam(
     autoregression=autoregression,
     seasonality={
         "yearly_seasonality": 25,
         "quarterly_seasonality": 0,
         "monthly_seasonality": 0,
         "weekly_seasonality": 0,
         "daily_seasonality": 0
     },
     changepoints={
         'changepoints_dict': {
             "method": "auto",
             "resample_freq": "7D",
             "regularization_strength": 0.5,
             "potential_changepoint_distance": "14D",
             "no_changepoint_distance_from_end": "60D",
             "yearly_seasonality_order": 25,
             "yearly_seasonality_change_freq": None,
         },
         "seasonality_changepoints_dict": None
     },
     events={
         "holiday_lookup_countries": []
     },
     growth={
         "growth_term": None
     },
     custom={
         'feature_sets_enabled': False,
         'fit_algorithm_dict': dict(fit_algorithm='ridge'),
         'extra_pred_cols': extra_pred_cols,
     }
 )

 forecast_config = ForecastConfig(
     metadata_param=metadata,
     forecast_horizon=forecast_horizon,
     coverage=0.95,
     evaluation_period_param=evaluation_period,
     model_components_param=model_components
 )

 # Run the forecast model
 forecaster = Forecaster()
 result = forecaster.run_forecast_config(
     df=ts.df,
     config=forecast_config
 )

Out:

Fitting 6 folds for each of 1 candidates, totalling 6 fits

Let’s check the model results summary and plots.

243
 get_model_results_summary(result)

Out:

================================ Model Summary =================================

Number of observations: 466,   Number of features: 68
Method: Ridge regression
Number of nonzero features: 68
Regularization parameter: 0.02807

Residuals:
         Min           1Q       Median           3Q          Max
  -2.758e+04      -3953.0        169.9       4685.0    2.165e+04

            Pred_col    Estimate   Std. Err Pr(>)_boot sig. code                     95%CI
           Intercept   1.086e+04     5469.0      0.038         *       (1769.0, 2.295e+04)
                 ct1   1.932e+04  1.151e+04      0.108                (-1087.0, 4.416e+04)
 ct1:C(mo... 13)))_2       917.1     6453.0      0.884             (-1.211e+04, 1.282e+04)
 ct1:C(mo... 13)))_3      9628.0     6039.0      0.100                (-2648.0, 2.137e+04)
 ct1:C(mo... 13)))_4   3.472e+04     5383.0     <2e-16       ***    (2.381e+04, 4.503e+04)
 ct1:C(mo... 13)))_5   2.762e+04     5947.0     <2e-16       ***    (1.639e+04, 3.922e+04)
 ct1:C(mo... 13)))_6   3.755e+04     5040.0     <2e-16       ***    (2.671e+04, 4.820e+04)
 ct1:C(mo... 13)))_7   4.068e+04     5000.0     <2e-16       ***    (3.019e+04, 5.016e+04)
 ct1:C(mo... 13)))_8   4.096e+04     5258.0     <2e-16       ***    (3.010e+04, 5.026e+04)
 ct1:C(mo... 13)))_9   3.261e+04     5876.0     <2e-16       ***    (2.138e+04, 4.394e+04)
 ct1:C(mo...13)))_10   3.322e+04     5077.0     <2e-16       ***    (2.377e+04, 4.332e+04)
 ct1:C(mo...13)))_11   1.036e+04     5632.0      0.078         .      (-1244.0, 2.231e+04)
 ct1:C(mo...13)))_12      4878.0     5030.0      0.310                (-5562.0, 1.429e+04)
             ct_sqrt   5.656e+04     8890.0     <2e-16       ***    (3.618e+04, 7.047e+04)
     sin1_ct1_yearly  -1.977e+04     1644.0     <2e-16       ***  (-2.310e+04, -1.685e+04)
     cos1_ct1_yearly      6433.0     1687.0     <2e-16       ***          (3365.0, 9984.0)
     sin2_ct1_yearly      5236.0     1595.0     <2e-16       ***          (2154.0, 8272.0)
     cos2_ct1_yearly      4841.0     1677.0      0.008        **          (1616.0, 8080.0)
     sin3_ct1_yearly      1800.0     1585.0      0.266                   (-1306.0, 4613.0)
     cos3_ct1_yearly      -272.9     1471.0      0.866                   (-3326.0, 2817.0)
     sin4_ct1_yearly      -337.2     1461.0      0.810                   (-3332.0, 2288.0)
     cos4_ct1_yearly     -1376.0     1494.0      0.372                   (-4439.0, 1421.0)
     sin5_ct1_yearly     -2044.0     1368.0      0.140                    (-4914.0, 420.5)
     cos5_ct1_yearly      -786.7     1293.0      0.534                   (-3193.0, 2053.0)
     sin6_ct1_yearly      -126.7     1485.0      0.922                   (-3026.0, 2559.0)
     cos6_ct1_yearly      1482.0     1119.0      0.170                    (-729.7, 3647.0)
     sin7_ct1_yearly      -363.0     1356.0      0.788                   (-3091.0, 2180.0)
     cos7_ct1_yearly      -270.2     1134.0      0.800                   (-2733.0, 1745.0)
     sin8_ct1_yearly     -1562.0     1154.0      0.172                    (-3922.0, 396.8)
     cos8_ct1_yearly       724.6     1050.0      0.492                   (-1249.0, 2879.0)
     sin9_ct1_yearly     -1829.0     1098.0      0.106                    (-3809.0, 422.6)
     cos9_ct1_yearly      2049.0     1222.0      0.100                    (-367.7, 4437.0)
    sin10_ct1_yearly       630.4     1070.0      0.536                   (-1709.0, 2705.0)
    cos10_ct1_yearly      1728.0     1095.0      0.096         .          (-225.6, 3943.0)
    sin11_ct1_yearly      2838.0     1046.0      0.008        **           (932.4, 5057.0)
    cos11_ct1_yearly      -686.5     1079.0      0.532                   (-2723.0, 1574.0)
    sin12_ct1_yearly     -2057.0     1014.0      0.042         *         (-4114.0, -176.5)
    cos12_ct1_yearly     -2302.0     1016.0      0.018         *         (-4311.0, -500.6)
    sin13_ct1_yearly      -407.8     1018.0      0.700                   (-2588.0, 1390.0)
    cos13_ct1_yearly       316.2     1072.0      0.748                   (-1732.0, 2287.0)
    sin14_ct1_yearly     -1372.0      989.5      0.164                    (-3154.0, 563.2)
    cos14_ct1_yearly      1162.0     1113.0      0.284                   (-1016.0, 3456.0)
    sin15_ct1_yearly       112.2     1070.0      0.922                   (-1879.0, 2353.0)
    cos15_ct1_yearly      1259.0     1057.0      0.226                    (-853.2, 3398.0)
    sin16_ct1_yearly     -2384.0     1037.0      0.026         *         (-4327.0, -271.9)
    cos16_ct1_yearly      -644.5     1036.0      0.548                   (-2571.0, 1488.0)
    sin17_ct1_yearly       680.7     1068.0      0.512                   (-1327.0, 2880.0)
    cos17_ct1_yearly       850.7     1014.0      0.414                   (-1130.0, 2837.0)
    sin18_ct1_yearly      -549.1     1087.0      0.616                   (-2587.0, 1601.0)
    cos18_ct1_yearly       220.5     1019.0      0.818                   (-1672.0, 2215.0)
    sin19_ct1_yearly      -579.2     1053.0      0.562                   (-2710.0, 1264.0)
    cos19_ct1_yearly      -773.8      998.4      0.452                   (-2592.0, 1178.0)
    sin20_ct1_yearly      1083.0     1120.0      0.332                    (-959.2, 3325.0)
    cos20_ct1_yearly       311.6     1070.0      0.766                   (-1788.0, 2494.0)
    sin21_ct1_yearly     -1025.0     1051.0      0.302                   (-3047.0, 1139.0)
    cos21_ct1_yearly      -483.3     1036.0      0.638                   (-2502.0, 1510.0)
    sin22_ct1_yearly      1110.0      981.9      0.246                    (-859.5, 3137.0)
    cos22_ct1_yearly       340.0     1140.0      0.776                   (-1772.0, 2693.0)
    sin23_ct1_yearly       506.2     1029.0      0.650                   (-1586.0, 2581.0)
    cos23_ct1_yearly     -3098.0     1117.0      0.006        **         (-5189.0, -810.4)
    sin24_ct1_yearly     -1075.0     1097.0      0.338                   (-3033.0, 1045.0)
    cos24_ct1_yearly      -367.7     1026.0      0.684                   (-2447.0, 1774.0)
    sin25_ct1_yearly     -2124.0     1042.0      0.038         *         (-4065.0, -171.1)
    cos25_ct1_yearly      -34.79     1048.0      0.972                   (-1953.0, 2185.0)
   cp0_2012_01_30_00      2645.0  1.201e+04      0.862             (-2.242e+04, 2.561e+04)
   cp1_2013_01_14_00  -2.420e+04  1.042e+04      0.020         *     (-4.451e+04, -4331.0)
   cp2_2015_02_23_00     -1574.0     5339.0      0.754                (-1.191e+04, 9621.0)
   cp3_2017_10_02_00  -1.979e+04     2755.0     <2e-16       ***  (-2.492e+04, -1.434e+04)
Signif. Code: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multiple R-squared: 0.9181,   Adjusted R-squared: 0.9047
F-statistic: 67.998 on 65 and 399 DF,   p-value: 1.110e-16
Model AIC: 11257.0,   model BIC: 11533.0

WARNING: the condition number is large, 2.06e+05. This might indicate that there are strong multicollinearity or other numerical problems.
WARNING: the F-ratio and its p-value on regularized methods might be misleading, they are provided only for reference purposes.

================================= CV Results ==================================
                                                          0
rank_test_MAPE                                            1
mean_test_MAPE                                        10.73
split_test_MAPE    (12.11, 15.22, 4.69, 10.99, 9.81, 11.59)
mean_train_MAPE                                       15.96
split_train_MAPE  (15.89, 16.1, 16.05, 15.95, 15.91, 15.88)
mean_fit_time                                          2.36
mean_score_time                                        0.29
params                                                   []
=========================== Train/Test Evaluation =============================
                                                          train         test
CORR                                                   0.957887     0.886164
R2                                                     0.917539     -2.01926
MSE                                                 5.01863e+07  5.18751e+07
RMSE                                                    7084.23      7202.44
MAE                                                     5394.33      6425.43
MedAE                                                   4193.48      6045.07
MAPE                                                    15.8538      8.13425
MedAPE                                                  8.59335      7.53921
sMAPE                                                   7.41262      3.86442
Q80                                                     2697.17      1285.09
Q95                                                     2697.17      321.272
Q99                                                     2697.17      64.2543
OutsideTolerance1p                                     0.943723            1
OutsideTolerance2p                                     0.883117            1
OutsideTolerance3p                                      0.80303            1
OutsideTolerance4p                                     0.755411         0.75
OutsideTolerance5p                                     0.705628          0.5
Outside Tolerance (fraction)                               None         None
R2_null_model_score                                        None         None
Prediction Band Width (%)                               78.8132      34.3116
Prediction Band Coverage (fraction)                    0.941558            1
Coverage: Lower Band                                   0.450216            1
Coverage: Upper Band                                   0.491342            0
Coverage Diff: Actual_Coverage - Intended_Coverage  -0.00844156         0.05

Fit/backtest plot:

247
248
 fig = result.backtest.plot()
 plotly.io.show(fig)

Forecast plot:

252
253
 fig = result.forecast.plot()
 plotly.io.show(fig)

The components plot:

257
258
 fig = result.forecast.plot_components()
 plotly.io.show(fig)

Fit a simple model with autoregression. This is done by specifying the autoregression parameter in ModelComponentsParam. Note that the auto-regressive structure can be customized further depending on your data.

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
 autoregression = {
     "autoreg_dict": {
         "lag_dict": {"orders": [1]},  # Only use lag-1
         "agg_lag_dict": None
     }
 }
 extra_pred_cols = ["ct1", "ct_sqrt", "ct1:C(month, levels=list(range(1, 13)))"]

 # Specify the model parameters
 model_components = ModelComponentsParam(
     autoregression=autoregression,
     seasonality={
         "yearly_seasonality": 25,
         "quarterly_seasonality": 0,
         "monthly_seasonality": 0,
         "weekly_seasonality": 0,
         "daily_seasonality": 0
     },
     changepoints={
         'changepoints_dict': {
             "method": "auto",
             "resample_freq": "7D",
             "regularization_strength": 0.5,
             "potential_changepoint_distance": "14D",
             "no_changepoint_distance_from_end": "60D",
             "yearly_seasonality_order": 25,
             "yearly_seasonality_change_freq": None,
         },
         "seasonality_changepoints_dict": None
     },
     events={
         "holiday_lookup_countries": []
     },
     growth={
         "growth_term": None
     },
     custom={
         'feature_sets_enabled': False,
         'fit_algorithm_dict': dict(fit_algorithm='ridge'),
         'extra_pred_cols': extra_pred_cols,
     }
 )

 forecast_config = ForecastConfig(
     metadata_param=metadata,
     forecast_horizon=forecast_horizon,
     coverage=0.95,
     evaluation_period_param=evaluation_period,
     model_components_param=model_components
 )

 # Run the forecast model
 forecaster = Forecaster()
 result = forecaster.run_forecast_config(
     df=ts.df,
     config=forecast_config
 )

Out:

Fitting 6 folds for each of 1 candidates, totalling 6 fits

Let’s check the model results summary and plots.

324
 get_model_results_summary(result)

Out:

================================ Model Summary =================================

Number of observations: 466,   Number of features: 69
Method: Ridge regression
Number of nonzero features: 69
Regularization parameter: 0.0621

Residuals:
         Min           1Q       Median           3Q          Max
  -2.954e+04      -3841.0        468.7       4111.0    2.007e+04

            Pred_col    Estimate Std. Err Pr(>)_boot sig. code                     95%CI
           Intercept   1.228e+04   4624.0      0.010         *       (4911.0, 2.222e+04)
                 ct1   1.700e+04   4986.0     <2e-16       ***       (7294.0, 2.681e+04)
 ct1:C(mo... 13)))_2     -1832.0   5245.0      0.730                (-1.195e+04, 7913.0)
 ct1:C(mo... 13)))_3      4877.0   4973.0      0.320                (-5110.0, 1.460e+04)
 ct1:C(mo... 13)))_4   2.342e+04   5067.0     <2e-16       ***    (1.316e+04, 3.291e+04)
 ct1:C(mo... 13)))_5   1.770e+04   5403.0     <2e-16       ***       (7552.0, 2.810e+04)
 ct1:C(mo... 13)))_6   2.350e+04   4775.0     <2e-16       ***    (1.410e+04, 3.258e+04)
 ct1:C(mo... 13)))_7   2.675e+04   4633.0     <2e-16       ***    (1.677e+04, 3.624e+04)
 ct1:C(mo... 13)))_8   2.596e+04   4902.0     <2e-16       ***    (1.578e+04, 3.431e+04)
 ct1:C(mo... 13)))_9   1.952e+04   5501.0     <2e-16       ***       (8632.0, 2.968e+04)
 ct1:C(mo...13)))_10   2.056e+04   5301.0     <2e-16       ***    (1.010e+04, 3.106e+04)
 ct1:C(mo...13)))_11      2924.0   4647.0      0.500                (-5897.0, 1.253e+04)
 ct1:C(mo...13)))_12      1582.0   4918.0      0.772                (-9213.0, 1.072e+04)
             ct_sqrt   3.718e+04   6095.0     <2e-16       ***    (2.312e+04, 4.826e+04)
     sin1_ct1_yearly  -1.452e+04   1833.0     <2e-16       ***  (-1.840e+04, -1.099e+04)
     cos1_ct1_yearly      4158.0   1641.0      0.010         *           (752.2, 7209.0)
     sin2_ct1_yearly      3378.0   1399.0      0.012         *           (770.4, 6172.0)
     cos2_ct1_yearly      4393.0   1519.0      0.006        **          (1554.0, 7692.0)
     sin3_ct1_yearly      1934.0   1514.0      0.182                   (-1031.0, 4829.0)
     cos3_ct1_yearly      -201.8   1402.0      0.874                   (-3147.0, 2387.0)
     sin4_ct1_yearly      -914.2   1355.0      0.478                   (-3639.0, 1694.0)
     cos4_ct1_yearly      -796.1   1294.0      0.522                   (-3318.0, 1864.0)
     sin5_ct1_yearly     -1596.0   1393.0      0.256                   (-4178.0, 1300.0)
     cos5_ct1_yearly      -988.7   1206.0      0.414                   (-3298.0, 1494.0)
     sin6_ct1_yearly       113.2   1320.0      0.938                   (-2515.0, 2869.0)
     cos6_ct1_yearly      1641.0   1145.0      0.146                    (-708.2, 3783.0)
     sin7_ct1_yearly      -485.6   1243.0      0.720                   (-2761.0, 1987.0)
     cos7_ct1_yearly      -215.5   1067.0      0.858                   (-2272.0, 1859.0)
     sin8_ct1_yearly     -1111.0   1123.0      0.330                    (-3399.0, 956.7)
     cos8_ct1_yearly       519.5   1036.0      0.644                   (-1365.0, 2546.0)
     sin9_ct1_yearly     -2083.0   1039.0      0.040         *         (-4081.0, -178.0)
     cos9_ct1_yearly      1135.0   1065.0      0.304                    (-846.4, 3279.0)
    sin10_ct1_yearly       178.2    974.2      0.888                   (-1784.0, 1997.0)
    cos10_ct1_yearly      1482.0   1031.0      0.132                    (-633.7, 3610.0)
    sin11_ct1_yearly      2166.0    966.7      0.028         *           (364.3, 4042.0)
    cos11_ct1_yearly      -251.9    991.1      0.798                   (-2130.0, 1828.0)
    sin12_ct1_yearly     -1328.0   1011.0      0.186                    (-3174.0, 645.0)
    cos12_ct1_yearly     -2660.0    978.4      0.010         *         (-4574.0, -717.1)
    sin13_ct1_yearly     -1046.0    994.8      0.294                    (-3068.0, 762.6)
    cos13_ct1_yearly       463.8    968.4      0.638                   (-1204.0, 2458.0)
    sin14_ct1_yearly     -1463.0    928.3      0.114                    (-3200.0, 291.8)
    cos14_ct1_yearly      1141.0   1023.0      0.270                    (-797.0, 3098.0)
    sin15_ct1_yearly      -189.7   1063.0      0.850                   (-2163.0, 1862.0)
    cos15_ct1_yearly      1158.0    938.1      0.228                    (-673.9, 2933.0)
    sin16_ct1_yearly     -2142.0    989.6      0.028         *         (-4138.0, -346.0)
    cos16_ct1_yearly     -1075.0    945.0      0.232                    (-2879.0, 882.2)
    sin17_ct1_yearly       423.9    974.8      0.672                   (-1420.0, 2302.0)
    cos17_ct1_yearly       983.1    988.7      0.322                    (-904.6, 2809.0)
    sin18_ct1_yearly      -245.8   1019.0      0.798                   (-2264.0, 1659.0)
    cos18_ct1_yearly      -192.3   1006.0      0.838                   (-2181.0, 1799.0)
    sin19_ct1_yearly      -698.6    995.0      0.476                   (-2603.0, 1130.0)
    cos19_ct1_yearly      -929.2    949.4      0.332                    (-2926.0, 747.6)
    sin20_ct1_yearly      1321.0   1008.0      0.186                    (-638.8, 3487.0)
    cos20_ct1_yearly       428.0    983.0      0.676                   (-1296.0, 2488.0)
    sin21_ct1_yearly     -1275.0    991.6      0.202                    (-3181.0, 640.1)
    cos21_ct1_yearly      -740.6   1038.0      0.486                   (-2970.0, 1093.0)
    sin22_ct1_yearly      1233.0    876.9      0.156                    (-532.8, 2887.0)
    cos22_ct1_yearly       603.5   1092.0      0.572                   (-1374.0, 2775.0)
    sin23_ct1_yearly       570.9    919.8      0.512                   (-1397.0, 2303.0)
    cos23_ct1_yearly     -3478.0   1060.0     <2e-16       ***        (-5601.0, -1546.0)
    sin24_ct1_yearly     -1124.0    940.4      0.238                    (-2907.0, 772.6)
    cos24_ct1_yearly      -484.6   1026.0      0.632                   (-2422.0, 1341.0)
    sin25_ct1_yearly     -2646.0    967.8      0.006        **         (-4619.0, -795.1)
    cos25_ct1_yearly       307.7    991.4      0.734                   (-1690.0, 2021.0)
   cp0_2012_01_30_00      2383.0   8194.0      0.772             (-1.359e+04, 1.806e+04)
   cp1_2013_01_14_00  -1.616e+04   7896.0      0.046         *      (-3.203e+04, -63.67)
   cp2_2015_02_23_00     -2032.0   4985.0      0.688                (-1.170e+04, 7310.0)
   cp3_2017_10_02_00  -1.392e+04   2900.0     <2e-16       ***     (-1.906e+04, -7394.0)
              y_lag1   2.981e+04   5173.0     <2e-16       ***    (1.986e+04, 4.014e+04)
Signif. Code: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multiple R-squared: 0.9245,   Adjusted R-squared: 0.912
F-statistic: 73.697 on 66 and 398 DF,   p-value: 1.110e-16
Model AIC: 11220.0,   model BIC: 11498.0

WARNING: the condition number is large, 1.04e+05. This might indicate that there are strong multicollinearity or other numerical problems.
WARNING: the F-ratio and its p-value on regularized methods might be misleading, they are provided only for reference purposes.

================================= CV Results ==================================
                                                           0
rank_test_MAPE                                             1
mean_test_MAPE                                         10.36
split_test_MAPE      (12.99, 16.75, 4.98, 8.52, 8.02, 10.94)
mean_train_MAPE                                        14.46
split_train_MAPE  (14.61, 14.54, 14.48, 14.43, 14.38, 14.31)
mean_fit_time                                           2.34
mean_score_time                                         4.11
params                                                    []
=========================== Train/Test Evaluation =============================
                                                          train         test
CORR                                                   0.961255     0.539296
R2                                                     0.924008    -0.939596
MSE                                                 4.62489e+07  3.33249e+07
RMSE                                                    6800.65      5772.77
MAE                                                     5131.61      4452.25
MedAE                                                   4077.58      3622.29
MAPE                                                     14.267      5.72096
MedAPE                                                  7.63189      4.56046
sMAPE                                                   6.68905      2.72693
Q80                                                     2565.81       890.45
Q95                                                     2565.81      222.612
Q99                                                     2565.81      44.5225
OutsideTolerance1p                                     0.919913         0.75
OutsideTolerance2p                                     0.863636          0.5
OutsideTolerance3p                                     0.798701          0.5
OutsideTolerance4p                                     0.757576          0.5
OutsideTolerance5p                                     0.675325          0.5
Outside Tolerance (fraction)                               None         None
R2_null_model_score                                        None         None
Prediction Band Width (%)                               75.6584      30.1178
Prediction Band Coverage (fraction)                    0.941558            1
Coverage: Lower Band                                   0.424242            1
Coverage: Upper Band                                   0.517316            0
Coverage Diff: Actual_Coverage - Intended_Coverage  -0.00844156         0.05

Fit/backtest plot:

328
329
 fig = result.backtest.plot()
 plotly.io.show(fig)

Forecast plot:

333
334
 fig = result.forecast.plot()
 plotly.io.show(fig)

The components plot:

338
339
 fig = result.forecast.plot_components()
 plotly.io.show(fig)

Fit a greykite model with autoregression and forecast one-by-one. Forecast one-by-one is only used when autoregression is set to “auto”, and it can be enable by setting forecast_one_by_one=True in Without forecast one-by-one, the lag order in autoregression has to be greater than the forecast horizon in order to avoid simulation (which leads to less accuracy). The advantage of turning on forecast_one_by_one is to improve the forecast accuracy by breaking the forecast horizon to smaller steps, fitting multiple models using immediate lags. Note that the forecast one-by-one option may slow down the training.

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
 autoregression = {
     "autoreg_dict": "auto"
 }
 extra_pred_cols = ["ct1", "ct_sqrt", "ct1:C(month, levels=list(range(1, 13)))"]
 forecast_one_by_one = True

 # Specify the model parameters
 model_components = ModelComponentsParam(
     autoregression=autoregression,
     seasonality={
         "yearly_seasonality": 25,
         "quarterly_seasonality": 0,
         "monthly_seasonality": 0,
         "weekly_seasonality": 0,
         "daily_seasonality": 0
     },
     changepoints={
         'changepoints_dict': {
             "method": "auto",
             "resample_freq": "7D",
             "regularization_strength": 0.5,
             "potential_changepoint_distance": "14D",
             "no_changepoint_distance_from_end": "60D",
             "yearly_seasonality_order": 25,
             "yearly_seasonality_change_freq": None,
         },
         "seasonality_changepoints_dict": None
     },
     events={
         "holiday_lookup_countries": []
     },
     growth={
         "growth_term": None
     },
     custom={
         'feature_sets_enabled': False,
         'fit_algorithm_dict': dict(fit_algorithm='ridge'),
         'extra_pred_cols': extra_pred_cols,
     }
 )

 forecast_config = ForecastConfig(
     metadata_param=metadata,
     forecast_horizon=forecast_horizon,
     coverage=0.95,
     evaluation_period_param=evaluation_period,
     model_components_param=model_components,
     forecast_one_by_one=forecast_one_by_one
 )

 # Run the forecast model
 forecaster = Forecaster()
 result =  forecaster.run_forecast_config(
     df=ts.df,
     config=forecast_config
 )

Out:

Fitting 6 folds for each of 1 candidates, totalling 6 fits

Let’s check the model results summary and plots. Here the forecast_one_by_one option fits 4 models for each step, hence 4 model summaries are printed, and 4 components plots are generated.

410
 get_model_results_summary(result)

Out:

[================================ Model Summary =================================

Number of observations: 466,   Number of features: 71
Method: Ridge regression
Number of nonzero features: 71
Regularization parameter: 0.0621

Residuals:
         Min           1Q       Median           3Q          Max
  -2.890e+04      -3782.0        623.6       3971.0    2.048e+04

            Pred_col    Estimate Std. Err Pr(>)_boot sig. code                    95%CI
           Intercept   1.157e+04   4586.0      0.018         *      (4769.0, 2.257e+04)
                 ct1   1.383e+04   5010.0      0.002        **      (4594.0, 2.369e+04)
 ct1:C(mo... 13)))_2     -1369.0   5398.0      0.784               (-1.181e+04, 9789.0)
 ct1:C(mo... 13)))_3      3498.0   5370.0      0.494               (-7555.0, 1.317e+04)
 ct1:C(mo... 13)))_4   2.005e+04   5527.0     <2e-16       ***      (8450.0, 3.053e+04)
 ct1:C(mo... 13)))_5   1.243e+04   5803.0      0.034         *      (1335.0, 2.400e+04)
 ct1:C(mo... 13)))_6   1.846e+04   5112.0     <2e-16       ***      (7555.0, 2.847e+04)
 ct1:C(mo... 13)))_7   2.014e+04   5008.0     <2e-16       ***      (9397.0, 2.921e+04)
 ct1:C(mo... 13)))_8   1.952e+04   5021.0     <2e-16       ***      (9338.0, 2.886e+04)
 ct1:C(mo... 13)))_9   1.316e+04   5525.0      0.018         *      (2031.0, 2.422e+04)
 ct1:C(mo...13)))_10   1.442e+04   5214.0      0.006        **      (3647.0, 2.401e+04)
 ct1:C(mo...13)))_11     -2251.0   4928.0      0.634               (-1.245e+04, 6658.0)
 ct1:C(mo...13)))_12       88.81   5116.0      0.986               (-1.047e+04, 9451.0)
             ct_sqrt   2.724e+04   6529.0     <2e-16       ***   (1.386e+04, 3.938e+04)
     sin1_ct1_yearly  -1.184e+04   1833.0     <2e-16       ***    (-1.556e+04, -8239.0)
     cos1_ct1_yearly      2201.0   1590.0      0.142                   (-956.3, 5161.0)
     sin2_ct1_yearly      2414.0   1358.0      0.086         .         (-280.8, 5459.0)
     cos2_ct1_yearly      4682.0   1522.0     <2e-16       ***         (1692.0, 7621.0)
     sin3_ct1_yearly      2098.0   1412.0      0.130                   (-802.5, 4758.0)
     cos3_ct1_yearly      -160.8   1384.0      0.898                  (-2866.0, 2338.0)
     sin4_ct1_yearly      -903.4   1308.0      0.492                  (-3564.0, 1746.0)
     cos4_ct1_yearly      -403.2   1465.0      0.798                  (-3430.0, 2376.0)
     sin5_ct1_yearly     -1422.0   1362.0      0.268                  (-4181.0, 1263.0)
     cos5_ct1_yearly     -1450.0   1297.0      0.260                  (-4127.0, 1017.0)
     sin6_ct1_yearly       18.43   1417.0      0.990                  (-2728.0, 2642.0)
     cos6_ct1_yearly      2262.0   1086.0      0.038         *          (77.73, 4250.0)
     sin7_ct1_yearly      -570.3   1213.0      0.646                  (-2998.0, 1827.0)
     cos7_ct1_yearly      -392.5   1084.0      0.708                  (-2452.0, 1561.0)
     sin8_ct1_yearly     -1046.0   1203.0      0.374                  (-3542.0, 1225.0)
     cos8_ct1_yearly       314.1   1097.0      0.796                  (-1610.0, 2464.0)
     sin9_ct1_yearly     -2537.0   1060.0      0.020         *        (-4764.0, -638.1)
     cos9_ct1_yearly      1553.0   1075.0      0.148                   (-673.6, 3556.0)
    sin10_ct1_yearly       384.5   1046.0      0.750                  (-1558.0, 2470.0)
    cos10_ct1_yearly      1482.0    951.4      0.116                   (-464.8, 3387.0)
    sin11_ct1_yearly      2064.0    968.8      0.030         *          (361.9, 4075.0)
    cos11_ct1_yearly      -377.9    938.0      0.690                  (-2015.0, 1494.0)
    sin12_ct1_yearly     -1793.0    976.2      0.066         .         (-3806.0, 4.433)
    cos12_ct1_yearly     -2747.0    954.6      0.008        **        (-4664.0, -925.8)
    sin13_ct1_yearly      -926.8   1021.0      0.354                  (-2824.0, 1097.0)
    cos13_ct1_yearly      1072.0   1022.0      0.290                   (-947.3, 3037.0)
    sin14_ct1_yearly     -1079.0    942.9      0.250                   (-2850.0, 884.2)
    cos14_ct1_yearly      1292.0    994.7      0.190                   (-617.6, 3207.0)
    sin15_ct1_yearly      -10.76   1098.0      0.992                  (-2083.0, 2248.0)
    cos15_ct1_yearly      1135.0   1005.0      0.244                   (-779.1, 3014.0)
    sin16_ct1_yearly     -2247.0   1028.0      0.036         *        (-4127.0, -139.1)
    cos16_ct1_yearly      -882.8   1014.0      0.384                  (-2829.0, 1110.0)
    sin17_ct1_yearly       484.5    962.1      0.610                  (-1419.0, 2186.0)
    cos17_ct1_yearly       891.7    990.1      0.374                   (-964.5, 2753.0)
    sin18_ct1_yearly      -413.2    979.4      0.686                  (-2313.0, 1456.0)
    cos18_ct1_yearly      -31.73    973.4      0.970                  (-1909.0, 1995.0)
    sin19_ct1_yearly      -696.1    976.2      0.468                   (-2691.0, 988.8)
    cos19_ct1_yearly      -785.3   1008.0      0.456                  (-2826.0, 1244.0)
    sin20_ct1_yearly      1262.0    916.5      0.178                   (-480.9, 3036.0)
    cos20_ct1_yearly       359.5    967.6      0.728                  (-1348.0, 2459.0)
    sin21_ct1_yearly     -1148.0   1028.0      0.258                  (-3156.0, 1021.0)
    cos21_ct1_yearly      -670.7   1065.0      0.548                  (-2718.0, 1320.0)
    sin22_ct1_yearly      1086.0    963.6      0.236                   (-946.5, 2847.0)
    cos22_ct1_yearly       421.2    999.2      0.656                  (-1494.0, 2301.0)
    sin23_ct1_yearly       409.4    909.6      0.654                  (-1473.0, 2226.0)
    cos23_ct1_yearly     -3170.0   1003.0     <2e-16       ***       (-5088.0, -1206.0)
    sin24_ct1_yearly     -1020.0    977.8      0.302                   (-3093.0, 811.4)
    cos24_ct1_yearly      -452.9   1005.0      0.644                  (-2587.0, 1482.0)
    sin25_ct1_yearly     -2412.0   1017.0      0.016         *        (-4200.0, -398.4)
    cos25_ct1_yearly       349.5    987.2      0.722                  (-1481.0, 2374.0)
   cp0_2012_01_30_00      2834.0   7737.0      0.714            (-1.205e+04, 1.711e+04)
   cp1_2013_01_14_00  -1.253e+04   7983.0      0.106               (-2.928e+04, 2947.0)
   cp2_2015_02_23_00     -1701.0   4985.0      0.764               (-1.120e+04, 7301.0)
   cp3_2017_10_02_00  -1.108e+04   2989.0     <2e-16       ***    (-1.678e+04, -5366.0)
              y_lag1   2.380e+04   5687.0     <2e-16       ***   (1.208e+04, 3.429e+04)
              y_lag2   1.217e+04   5467.0      0.022         *      (1269.0, 2.231e+04)
              y_lag3   1.001e+04   5276.0      0.050         .       (459.7, 2.026e+04)
Signif. Code: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multiple R-squared: 0.9265,   Adjusted R-squared: 0.9139
F-statistic: 73.444 on 67 and 397 DF,   p-value: 1.110e-16
Model AIC: 11212.0,   model BIC: 11498.0

WARNING: the condition number is large, 1.08e+05. This might indicate that there are strong multicollinearity or other numerical problems.
WARNING: the F-ratio and its p-value on regularized methods might be misleading, they are provided only for reference purposes.
, ================================ Model Summary =================================

Number of observations: 466,   Number of features: 71
Method: Ridge regression
Number of nonzero features: 71
Regularization parameter: 0.0621

Residuals:
         Min           1Q       Median           3Q          Max
  -2.845e+04      -3677.0        385.2       4356.0    1.959e+04

            Pred_col    Estimate Std. Err Pr(>)_boot sig. code                     95%CI
           Intercept   1.081e+04   4749.0      0.026         *       (3416.0, 2.202e+04)
                 ct1   1.641e+04   5640.0      0.002        **       (4967.0, 2.802e+04)
 ct1:C(mo... 13)))_2      -370.3   6152.0      0.962             (-1.342e+04, 1.036e+04)
 ct1:C(mo... 13)))_3      4962.0   5765.0      0.384                (-6816.0, 1.480e+04)
 ct1:C(mo... 13)))_4   2.512e+04   5309.0     <2e-16       ***    (1.402e+04, 3.427e+04)
 ct1:C(mo... 13)))_5   1.566e+04   6101.0      0.014         *       (1580.0, 2.572e+04)
 ct1:C(mo... 13)))_6   2.458e+04   5197.0     <2e-16       ***    (1.341e+04, 3.380e+04)
 ct1:C(mo... 13)))_7   2.551e+04   5503.0      0.002        **    (1.341e+04, 3.485e+04)
 ct1:C(mo... 13)))_8   2.564e+04   5394.0     <2e-16       ***    (1.365e+04, 3.406e+04)
 ct1:C(mo... 13)))_9   1.826e+04   5980.0      0.004        **       (6089.0, 2.985e+04)
 ct1:C(mo...13)))_10   1.944e+04   5696.0      0.002        **       (6677.0, 2.958e+04)
 ct1:C(mo...13)))_11      -402.0   5436.0      0.938                (-1.278e+04, 8974.0)
 ct1:C(mo...13)))_12       649.1   5304.0      0.898                (-1.008e+04, 8938.0)
             ct_sqrt   3.508e+04   7247.0     <2e-16       ***    (2.004e+04, 4.708e+04)
     sin1_ct1_yearly  -1.474e+04   1905.0     <2e-16       ***  (-1.849e+04, -1.144e+04)
     cos1_ct1_yearly      3027.0   1722.0      0.084         .          (-421.9, 6460.0)
     sin2_ct1_yearly      3383.0   1477.0      0.020         *           (852.5, 6560.0)
     cos2_ct1_yearly      5267.0   1495.0     <2e-16       ***          (2328.0, 8145.0)
     sin3_ct1_yearly      2135.0   1393.0      0.120                    (-650.9, 4728.0)
     cos3_ct1_yearly      -350.5   1472.0      0.776                   (-3166.0, 2616.0)
     sin4_ct1_yearly      -665.1   1403.0      0.626                   (-3430.0, 2153.0)
     cos4_ct1_yearly      -669.7   1372.0      0.594                   (-3314.0, 2228.0)
     sin5_ct1_yearly     -1646.0   1303.0      0.204                    (-4071.0, 884.9)
     cos5_ct1_yearly     -1388.0   1263.0      0.298                   (-3748.0, 1111.0)
     sin6_ct1_yearly      -82.52   1497.0      0.944                   (-2934.0, 2708.0)
     cos6_ct1_yearly      2357.0   1111.0      0.034         *           (122.7, 4513.0)
     sin7_ct1_yearly      -591.4   1277.0      0.640                   (-3352.0, 1782.0)
     cos7_ct1_yearly      -571.0   1055.0      0.576                   (-2598.0, 1521.0)
     sin8_ct1_yearly     -1370.0   1162.0      0.246                    (-3532.0, 956.1)
     cos8_ct1_yearly       438.5   1095.0      0.748                   (-1439.0, 2516.0)
     sin9_ct1_yearly     -2511.0   1073.0      0.024         *         (-4532.0, -274.2)
     cos9_ct1_yearly      2370.0   1147.0      0.034         *           (341.5, 4653.0)
    sin10_ct1_yearly       767.9   1034.0      0.450                   (-1254.0, 2833.0)
    cos10_ct1_yearly      1622.0   1011.0      0.132                    (-449.4, 3517.0)
    sin11_ct1_yearly      2459.0   1042.0      0.018         *           (486.5, 4427.0)
    cos11_ct1_yearly      -712.9    997.1      0.490                   (-2555.0, 1347.0)
    sin12_ct1_yearly     -2496.0   1017.0      0.012         *         (-4679.0, -533.2)
    cos12_ct1_yearly     -2554.0    987.7      0.012         *         (-4506.0, -746.5)
    sin13_ct1_yearly      -464.0   1078.0      0.666                   (-2709.0, 1531.0)
    cos13_ct1_yearly      1258.0    990.3      0.196                    (-532.2, 3306.0)
    sin14_ct1_yearly      -833.4    970.5      0.404                   (-2637.0, 1095.0)
    cos14_ct1_yearly      1381.0   1023.0      0.168                    (-612.4, 3349.0)
    sin15_ct1_yearly       256.7   1110.0      0.816                   (-1749.0, 2487.0)
    cos15_ct1_yearly      1171.0   1019.0      0.264                    (-850.0, 3023.0)
    sin16_ct1_yearly     -2512.0   1013.0      0.008        **         (-4600.0, -765.7)
    cos16_ct1_yearly      -483.9    987.6      0.614                   (-2417.0, 1509.0)
    sin17_ct1_yearly       730.2   1001.0      0.460                   (-1127.0, 2585.0)
    cos17_ct1_yearly       778.5    983.8      0.450                   (-1174.0, 2607.0)
    sin18_ct1_yearly      -699.5   1064.0      0.514                   (-2863.0, 1189.0)
    cos18_ct1_yearly       272.6   1043.0      0.794                   (-1729.0, 2595.0)
    sin19_ct1_yearly      -664.3   1021.0      0.500                   (-2657.0, 1456.0)
    cos19_ct1_yearly      -601.2   1038.0      0.574                   (-2650.0, 1383.0)
    sin20_ct1_yearly      1087.0   1003.0      0.276                    (-846.7, 3016.0)
    cos20_ct1_yearly       252.7    958.0      0.758                   (-1848.0, 2010.0)
    sin21_ct1_yearly      -908.7   1030.0      0.390                   (-2909.0, 1046.0)
    cos21_ct1_yearly      -453.1   1013.0      0.624                   (-2491.0, 1594.0)
    sin22_ct1_yearly       922.5    978.9      0.342                    (-985.6, 2707.0)
    cos22_ct1_yearly       129.3   1035.0      0.898                   (-2045.0, 2102.0)
    sin23_ct1_yearly       247.3    983.1      0.792                   (-1728.0, 2082.0)
    cos23_ct1_yearly     -2725.0    983.3      0.004        **         (-4520.0, -755.7)
    sin24_ct1_yearly      -933.8   1012.0      0.338                   (-2866.0, 1092.0)
    cos24_ct1_yearly      -348.9   1028.0      0.700                   (-2413.0, 1738.0)
    sin25_ct1_yearly     -1887.0   1015.0      0.070         .          (-4037.0, 162.1)
    cos25_ct1_yearly       142.6   1034.0      0.884                   (-1690.0, 2224.0)
   cp0_2012_01_30_00      2893.0   8225.0      0.728             (-1.325e+04, 1.886e+04)
   cp1_2013_01_14_00  -1.565e+04   8463.0      0.068         .      (-3.175e+04, 2032.0)
   cp2_2015_02_23_00     -1969.0   5154.0      0.698                (-1.276e+04, 7712.0)
   cp3_2017_10_02_00  -1.377e+04   2932.0     <2e-16       ***     (-1.904e+04, -7614.0)
              y_lag2   1.841e+04   5583.0     <2e-16       ***       (6970.0, 2.948e+04)
              y_lag3   1.335e+04   5698.0      0.020         *       (2461.0, 2.513e+04)
              y_lag4       384.1   5474.0      0.942             (-1.052e+04, 1.007e+04)
Signif. Code: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multiple R-squared: 0.9225,   Adjusted R-squared: 0.9092
F-statistic: 69.268 on 67 and 397 DF,   p-value: 1.110e-16
Model AIC: 11236.0,   model BIC: 11522.0

WARNING: the condition number is large, 1.08e+05. This might indicate that there are strong multicollinearity or other numerical problems.
WARNING: the F-ratio and its p-value on regularized methods might be misleading, they are provided only for reference purposes.
, ================================ Model Summary =================================

Number of observations: 466,   Number of features: 71
Method: Ridge regression
Number of nonzero features: 71
Regularization parameter: 0.0621

Residuals:
         Min           1Q       Median           3Q          Max
  -2.803e+04      -3780.0        295.0       4331.0    2.130e+04

            Pred_col    Estimate Std. Err Pr(>)_boot sig. code                     95%CI
           Intercept   1.174e+04   5057.0      0.020         *       (3318.0, 2.308e+04)
                 ct1   1.729e+04   6260.0      0.002        **       (5731.0, 3.019e+04)
 ct1:C(mo... 13)))_2      1405.0   6111.0      0.806             (-1.104e+04, 1.238e+04)
 ct1:C(mo... 13)))_3      7198.0   5924.0      0.214                (-5566.0, 1.801e+04)
 ct1:C(mo... 13)))_4   2.871e+04   5167.0     <2e-16       ***    (1.719e+04, 3.708e+04)
 ct1:C(mo... 13)))_5   1.782e+04   6066.0      0.004        **       (4248.0, 2.779e+04)
 ct1:C(mo... 13)))_6   2.810e+04   4969.0     <2e-16       ***    (1.741e+04, 3.742e+04)
 ct1:C(mo... 13)))_7   2.890e+04   5096.0     <2e-16       ***    (1.844e+04, 3.826e+04)
 ct1:C(mo... 13)))_8   2.861e+04   5544.0     <2e-16       ***    (1.753e+04, 3.900e+04)
 ct1:C(mo... 13)))_9   2.073e+04   6162.0     <2e-16       ***       (7510.0, 3.264e+04)
 ct1:C(mo...13)))_10   2.231e+04   5238.0     <2e-16       ***    (1.084e+04, 3.180e+04)
 ct1:C(mo...13)))_11       132.7   5491.0      0.982                (-1.074e+04, 9768.0)
 ct1:C(mo...13)))_12      1278.0   5227.0      0.778                (-1.068e+04, 9512.0)
             ct_sqrt   3.670e+04   7045.0     <2e-16       ***    (2.302e+04, 4.937e+04)
     sin1_ct1_yearly  -1.623e+04   1902.0     <2e-16       ***  (-1.988e+04, -1.281e+04)
     cos1_ct1_yearly      2976.0   1797.0      0.092         .          (-309.5, 6888.0)
     sin2_ct1_yearly      3903.0   1539.0      0.010         *           (934.1, 7072.0)
     cos2_ct1_yearly      5873.0   1649.0     <2e-16       ***          (2542.0, 9174.0)
     sin3_ct1_yearly      1995.0   1402.0      0.146                    (-884.8, 4630.0)
     cos3_ct1_yearly      -385.0   1504.0      0.806                   (-3422.0, 2331.0)
     sin4_ct1_yearly      -256.7   1545.0      0.868                   (-3497.0, 2821.0)
     cos4_ct1_yearly     -1006.0   1454.0      0.490                   (-3592.0, 1874.0)
     sin5_ct1_yearly     -2232.0   1490.0      0.138                    (-5158.0, 600.9)
     cos5_ct1_yearly     -1400.0   1455.0      0.334                   (-4127.0, 1459.0)
     sin6_ct1_yearly      -94.22   1436.0      0.942                   (-2768.0, 2756.0)
     cos6_ct1_yearly      1961.0   1132.0      0.074         .          (-175.1, 3988.0)
     sin7_ct1_yearly      -576.8   1322.0      0.688                   (-3137.0, 1782.0)
     cos7_ct1_yearly      -366.1   1147.0      0.756                   (-2804.0, 1751.0)
     sin8_ct1_yearly     -1574.0   1157.0      0.174                    (-3976.0, 625.3)
     cos8_ct1_yearly       846.0   1126.0      0.462                   (-1152.0, 3196.0)
     sin9_ct1_yearly     -1734.0   1070.0      0.098         .          (-3730.0, 307.1)
     cos9_ct1_yearly      2571.0   1166.0      0.028         *           (315.2, 4878.0)
    sin10_ct1_yearly       936.5   1095.0      0.366                   (-1341.0, 3037.0)
    cos10_ct1_yearly      1333.0   1073.0      0.232                    (-776.3, 3317.0)
    sin11_ct1_yearly      2276.0   1035.0      0.024         *           (339.8, 4246.0)
    cos11_ct1_yearly      -887.5   1085.0      0.386                   (-3027.0, 1216.0)
    sin12_ct1_yearly     -2133.0   1038.0      0.042         *         (-4235.0, -207.3)
    cos12_ct1_yearly     -2129.0   1023.0      0.036         *         (-4076.0, -191.2)
    sin13_ct1_yearly      -311.7   1084.0      0.768                   (-2419.0, 1732.0)
    cos13_ct1_yearly       806.0   1070.0      0.446                   (-1186.0, 2888.0)
    sin14_ct1_yearly      -983.8    995.7      0.314                    (-3029.0, 970.9)
    cos14_ct1_yearly      1091.0   1050.0      0.296                    (-912.9, 3128.0)
    sin15_ct1_yearly       138.3   1076.0      0.880                   (-1714.0, 2287.0)
    cos15_ct1_yearly      1151.0   1055.0      0.276                    (-783.2, 3275.0)
    sin16_ct1_yearly     -2434.0   1032.0      0.018         *         (-4425.0, -525.7)
    cos16_ct1_yearly      -554.2    991.0      0.552                   (-2395.0, 1516.0)
    sin17_ct1_yearly       657.1   1055.0      0.586                   (-1238.0, 2634.0)
    cos17_ct1_yearly       765.6   1057.0      0.492                   (-1162.0, 2773.0)
    sin18_ct1_yearly      -705.3   1014.0      0.524                   (-2570.0, 1276.0)
    cos18_ct1_yearly       471.5   1088.0      0.672                   (-1466.0, 2638.0)
    sin19_ct1_yearly      -460.8   1024.0      0.630                   (-2542.0, 1503.0)
    cos19_ct1_yearly      -671.8   1055.0      0.540                   (-2656.0, 1353.0)
    sin20_ct1_yearly      1066.0   1029.0      0.310                    (-878.0, 3067.0)
    cos20_ct1_yearly       441.2   1016.0      0.656                   (-1383.0, 2658.0)
    sin21_ct1_yearly      -826.5   1031.0      0.434                   (-2936.0, 1136.0)
    cos21_ct1_yearly      -657.0   1021.0      0.470                   (-2765.0, 1279.0)
    sin22_ct1_yearly       867.5    925.1      0.368                    (-979.9, 2491.0)
    cos22_ct1_yearly       350.7   1095.0      0.772                   (-1592.0, 2497.0)
    sin23_ct1_yearly       802.0    978.8      0.428                    (-999.9, 2713.0)
    cos23_ct1_yearly     -3043.0   1084.0      0.002        **        (-5304.0, -1003.0)
    sin24_ct1_yearly     -1033.0   1010.0      0.330                    (-3013.0, 904.9)
    cos24_ct1_yearly      -523.5   1008.0      0.628                   (-2509.0, 1478.0)
    sin25_ct1_yearly     -2544.0   1008.0      0.014         *         (-4599.0, -678.5)
    cos25_ct1_yearly       49.26   1046.0      0.954                   (-1994.0, 2195.0)
   cp0_2012_01_30_00      2950.0   8545.0      0.742             (-1.358e+04, 1.957e+04)
   cp1_2013_01_14_00  -1.687e+04   8154.0      0.030         *      (-3.097e+04, -531.2)
   cp2_2015_02_23_00     -2182.0   5035.0      0.700                (-1.115e+04, 8328.0)
   cp3_2017_10_02_00  -1.481e+04   2865.0     <2e-16       ***     (-2.022e+04, -9512.0)
              y_lag3   1.671e+04   5838.0      0.006        **       (5379.0, 2.786e+04)
              y_lag4       553.5   5565.0      0.932                (-9860.0, 1.160e+04)
              y_lag5   1.004e+04   4902.0      0.042         *        (281.9, 1.952e+04)
Signif. Code: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multiple R-squared: 0.9208,   Adjusted R-squared: 0.9072
F-statistic: 67.654 on 67 and 397 DF,   p-value: 1.110e-16
Model AIC: 11246.0,   model BIC: 11532.0

WARNING: the condition number is large, 1.08e+05. This might indicate that there are strong multicollinearity or other numerical problems.
WARNING: the F-ratio and its p-value on regularized methods might be misleading, they are provided only for reference purposes.
, ================================ Model Summary =================================

Number of observations: 466,   Number of features: 71
Method: Ridge regression
Number of nonzero features: 71
Regularization parameter: 0.02807

Residuals:
         Min           1Q       Median           3Q          Max
  -2.844e+04      -3736.0        448.2       4182.0    2.170e+04

            Pred_col    Estimate   Std. Err Pr(>)_boot sig. code                     95%CI
           Intercept   1.167e+04     5565.0      0.046         *       (3538.0, 2.571e+04)
                 ct1   1.785e+04  1.093e+04      0.086         .       (-293.3, 3.981e+04)
 ct1:C(mo... 13)))_2      2556.0     6402.0      0.670             (-1.079e+04, 1.435e+04)
 ct1:C(mo... 13)))_3      9731.0     6422.0      0.136                (-2886.0, 2.125e+04)
 ct1:C(mo... 13)))_4   3.373e+04     5573.0     <2e-16       ***    (2.243e+04, 4.414e+04)
 ct1:C(mo... 13)))_5   2.337e+04     6455.0     <2e-16       ***    (1.064e+04, 3.548e+04)
 ct1:C(mo... 13)))_6   3.428e+04     5506.0     <2e-16       ***    (2.431e+04, 4.466e+04)
 ct1:C(mo... 13)))_7   3.618e+04     5631.0     <2e-16       ***    (2.486e+04, 4.738e+04)
 ct1:C(mo... 13)))_8   3.622e+04     5782.0     <2e-16       ***    (2.487e+04, 4.731e+04)
 ct1:C(mo... 13)))_9   2.771e+04     6384.0     <2e-16       ***    (1.562e+04, 3.990e+04)
 ct1:C(mo...13)))_10   2.884e+04     5796.0     <2e-16       ***    (1.760e+04, 4.018e+04)
 ct1:C(mo...13)))_11      5801.0     6172.0      0.350                (-5390.0, 1.764e+04)
 ct1:C(mo...13)))_12      3647.0     5259.0      0.474                (-7792.0, 1.305e+04)
             ct_sqrt   4.639e+04     9771.0     <2e-16       ***    (2.642e+04, 6.428e+04)
     sin1_ct1_yearly  -1.796e+04     1754.0     <2e-16       ***  (-2.182e+04, -1.480e+04)
     cos1_ct1_yearly      4496.0     1834.0      0.010         *           (953.9, 7875.0)
     sin2_ct1_yearly      4660.0     1643.0      0.006        **          (1569.0, 8150.0)
     cos2_ct1_yearly      5335.0     1671.0     <2e-16       ***          (2300.0, 9232.0)
     sin3_ct1_yearly      1819.0     1656.0      0.244                   (-1657.0, 4822.0)
     cos3_ct1_yearly      -139.4     1522.0      0.938                   (-3023.0, 2592.0)
     sin4_ct1_yearly      -144.7     1516.0      0.920                   (-3151.0, 2737.0)
     cos4_ct1_yearly     -1255.0     1444.0      0.372                   (-4072.0, 1590.0)
     sin5_ct1_yearly     -2204.0     1417.0      0.114                    (-5037.0, 462.1)
     cos5_ct1_yearly     -1147.0     1316.0      0.372                   (-3630.0, 1484.0)
     sin6_ct1_yearly      -262.0     1446.0      0.844                   (-2896.0, 2531.0)
     cos6_ct1_yearly      1650.0     1109.0      0.136                    (-391.1, 4078.0)
     sin7_ct1_yearly      -376.6     1320.0      0.776                   (-2868.0, 2158.0)
     cos7_ct1_yearly      -280.6     1155.0      0.804                   (-2623.0, 1925.0)
     sin8_ct1_yearly     -1639.0     1212.0      0.160                    (-4277.0, 471.6)
     cos8_ct1_yearly       933.8     1143.0      0.446                   (-1060.0, 3215.0)
     sin9_ct1_yearly     -1453.0     1056.0      0.164                    (-3578.0, 433.8)
     cos9_ct1_yearly      2266.0     1182.0      0.052         .           (288.6, 4839.0)
    sin10_ct1_yearly       826.0     1061.0      0.440                   (-1102.0, 2963.0)
    cos10_ct1_yearly      1374.0     1058.0      0.174                    (-638.7, 3493.0)
    sin11_ct1_yearly      2407.0     1042.0      0.026         *           (209.6, 4313.0)
    cos11_ct1_yearly      -786.0     1120.0      0.480                   (-2894.0, 1425.0)
    sin12_ct1_yearly     -1690.0     1012.0      0.088         .          (-3668.0, 216.3)
    cos12_ct1_yearly     -2128.0     1141.0      0.060         .          (-4460.0, 3.572)
    sin13_ct1_yearly      -512.2     1064.0      0.644                   (-2740.0, 1581.0)
    cos13_ct1_yearly       277.1     1063.0      0.820                   (-1783.0, 2479.0)
    sin14_ct1_yearly     -1453.0      998.0      0.142                    (-3484.0, 434.0)
    cos14_ct1_yearly      1027.0      997.3      0.290                    (-753.2, 3133.0)
    sin15_ct1_yearly      -11.37     1081.0      0.986                   (-1956.0, 2040.0)
    cos15_ct1_yearly      1352.0     1028.0      0.204                    (-667.1, 3351.0)
    sin16_ct1_yearly     -2544.0     1076.0      0.022         *         (-4699.0, -458.5)
    cos16_ct1_yearly      -857.2     1090.0      0.430                   (-2690.0, 1483.0)
    sin17_ct1_yearly       743.2     1041.0      0.470                   (-1043.0, 2937.0)
    cos17_ct1_yearly       887.1     1044.0      0.380                   (-1287.0, 2666.0)
    sin18_ct1_yearly      -719.1     1048.0      0.518                   (-2876.0, 1116.0)
    cos18_ct1_yearly       346.5     1032.0      0.718                   (-1688.0, 2316.0)
    sin19_ct1_yearly      -632.6     1135.0      0.598                   (-3032.0, 1270.0)
    cos19_ct1_yearly      -719.2     1025.0      0.500                   (-2714.0, 1111.0)
    sin20_ct1_yearly      1077.0     1038.0      0.290                    (-701.9, 3323.0)
    cos20_ct1_yearly       254.7     1021.0      0.782                   (-1748.0, 2371.0)
    sin21_ct1_yearly      -907.9      951.5      0.336                    (-2830.0, 998.6)
    cos21_ct1_yearly      -420.9     1099.0      0.724                   (-2484.0, 1868.0)
    sin22_ct1_yearly       968.5      997.7      0.316                   (-1010.0, 3041.0)
    cos22_ct1_yearly       213.5     1103.0      0.844                   (-2082.0, 2229.0)
    sin23_ct1_yearly       593.9      996.1      0.554                   (-1327.0, 2475.0)
    cos23_ct1_yearly     -2913.0     1113.0      0.010         *         (-5124.0, -811.3)
    sin24_ct1_yearly     -1020.0     1068.0      0.334                   (-2952.0, 1099.0)
    cos24_ct1_yearly      -433.4      988.8      0.672                   (-2255.0, 1475.0)
    sin25_ct1_yearly     -2270.0     1075.0      0.032         *         (-4314.0, -58.01)
    cos25_ct1_yearly      -60.41     1019.0      0.954                   (-2025.0, 1895.0)
   cp0_2012_01_30_00      2899.0  1.177e+04      0.790             (-2.031e+04, 2.598e+04)
   cp1_2013_01_14_00  -2.130e+04  1.030e+04      0.034         *     (-4.148e+04, -2872.0)
   cp2_2015_02_23_00     -1575.0     5410.0      0.778                (-1.189e+04, 8716.0)
   cp3_2017_10_02_00  -1.748e+04     3119.0     <2e-16       ***  (-2.333e+04, -1.179e+04)
              y_lag4      4134.0     5344.0      0.450                (-6608.0, 1.446e+04)
              y_lag5   1.226e+04     5326.0      0.024         *        (615.8, 2.224e+04)
              y_lag6     -2743.0     6133.0      0.642                (-1.373e+04, 8868.0)
Signif. Code: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multiple R-squared: 0.9193,   Adjusted R-squared: 0.9054
F-statistic: 65.708 on 68 and 396 DF,   p-value: 1.110e-16
Model AIC: 11256.0,   model BIC: 11545.0

WARNING: the condition number is large, 2.17e+05. This might indicate that there are strong multicollinearity or other numerical problems.
WARNING: the F-ratio and its p-value on regularized methods might be misleading, they are provided only for reference purposes.
]
================================= CV Results ==================================
                                                          0
rank_test_MAPE                                            1
mean_test_MAPE                                        10.34
split_test_MAPE      (10.34, 15.4, 6.67, 11.39, 9.49, 8.78)
mean_train_MAPE                                       15.57
split_train_MAPE  (15.68, 15.65, 15.63, 15.54, 15.5, 15.44)
mean_fit_time                                          8.93
mean_score_time                                        0.83
params                                                   []
=========================== Train/Test Evaluation =============================
                                                          train         test
CORR                                                   0.958442     0.927707
R2                                                     0.918606     -1.01788
MSE                                                 4.95366e+07  3.46699e+07
RMSE                                                    7038.22      5888.12
MAE                                                     5322.25      4775.37
MedAE                                                   4027.17       4324.4
MAPE                                                    15.3776       6.1112
MedAPE                                                  8.10622      5.45003
sMAPE                                                   7.19792      2.91722
Q80                                                     2661.13      955.075
Q95                                                     2661.13      238.769
Q99                                                     2661.13      47.7537
OutsideTolerance1p                                     0.950216            1
OutsideTolerance2p                                     0.880952         0.75
OutsideTolerance3p                                     0.829004          0.5
OutsideTolerance4p                                     0.774892          0.5
OutsideTolerance5p                                     0.679654          0.5
Outside Tolerance (fraction)                               None         None
R2_null_model_score                                        None         None
Prediction Band Width (%)                               78.3014      33.4519
Prediction Band Coverage (fraction)                    0.937229            1
Coverage: Lower Band                                   0.430736            1
Coverage: Upper Band                                   0.506494            0
Coverage Diff: Actual_Coverage - Intended_Coverage   -0.0127706         0.05

Fit/backtest plot:

414
415
 fig = result.backtest.plot()
 plotly.io.show(fig)

Forecast plot:

419
420
 fig = result.forecast.plot()
 plotly.io.show(fig)

The components plot:

424
425
426
 figs = result.forecast.plot_components()
 for fig in figs:
     plotly.io.show(fig)

Total running time of the script: ( 2 minutes 42.065 seconds)

Gallery generated by Sphinx-Gallery