Source code for greykite.algo.common.ml_models

# BSD 2-CLAUSE LICENSE

# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:

# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# #ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# original author: Reza Hosseini
"""Functions to fit a machine learning model
and use it for prediction.
"""

import random
import re
import warnings

import matplotlib
import numpy as np
import pandas as pd
import patsy
import statsmodels.api as sm
from pandas.plotting import register_matplotlib_converters
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import ElasticNetCV
from sklearn.linear_model import LarsCV
from sklearn.linear_model import LassoCV
from sklearn.linear_model import LassoLarsCV
from sklearn.linear_model import RidgeCV
from sklearn.linear_model import SGDRegressor

from greykite.algo.uncertainty.conditional.conf_interval import conf_interval
from greykite.algo.uncertainty.conditional.conf_interval import predict_ci
from greykite.common.constants import ERR_STD_COL
from greykite.common.constants import R2_null_model_score
from greykite.common.evaluation import calc_pred_err
from greykite.common.evaluation import r2_null_model_score
from greykite.common.features.normalize import normalize_df
from greykite.common.python_utils import group_strs_with_regex_patterns


matplotlib.use("agg")  # noqa: E402
import matplotlib.pyplot as plt  # isort:skip


register_matplotlib_converters()


def design_mat_from_formula(
        df,
        model_formula_str,
        y_col=None,
        pred_cols=None):
    """ Given a formula it extracts the response vector (y)
    and builds the design matrix (x_mat)

    :param df: pd.DataFrame
        A data frame with the response vector (y) and the feature columns (x_mat)
    :param model_formula_str: str
        A formula string e.g. "y~x1+x2+x3*x4".
        This is similar to R formulas.
        See https://patsy.readthedocs.io/en/latest/formulas.html#how-formulas-work.
    :param y_col: str
        The column name which has the value of interest to be forecasted.
        If the model_formula_str is not passed, y_col e.g. ["y"] is used
        as the response vector column
    :param pred_cols: List[str]
        The names of the feature columns
        If the model_formula_str is not passed, pred_cols e.g.
        ["x1", "x2", "x3"] is used as the design matrix columns
    :return: dict
        "y": The response vector
        "y_col": Name of the response column (y)
        "x_mat": A design matrix
        "pred_cols": Name of the columns of the design matrix (x_mat)
        "x_design_info": Information for design matrix
    """
    if model_formula_str is not None:
        y, x_mat = patsy.dmatrices(
            model_formula_str,
            data=df,
            return_type="dataframe")
        pred_cols = list(x_mat.columns)
        # get the response column name using "~" location
        y_col = re.search("(.*)~", model_formula_str).group(1).strip(" ")
        y = y[y.columns[0]]
        x_design_info = x_mat.design_info
    elif y_col is not None and pred_cols is not None:
        y = df[y_col]
        x_mat = df[pred_cols]
        x_design_info = None
    else:
        raise Exception(
            f"Either provide a model expression or both y_col and pred_cols.")

    return {
        "y": y,
        "y_col": y_col,
        "x_mat": x_mat,
        "pred_cols": pred_cols,
        "x_design_info": x_design_info}


def fit_model_via_design_matrix(
        x_train,
        y_train,
        fit_algorithm,
        sample_weight=None,
        fit_algorithm_params=None):
    """Fits the predictive model and returns the prediction function.

    Parameters
    ----------
    x_train : `numpy.array`
        The design matrix
    y_train : `numpy.array`
        The vector of responses
    fit_algorithm : `str`
        The type of predictive model used in fitting
        (implemented by sklearn and statsmodels).

        Available models are:

            - ``"statsmodels_ols"``   : `statsmodels.regression.linear_model.OLS`
            - ``"statsmodels_wls"``   : `statsmodels.regression.linear_model.WLS`
            - ``"statsmodels_gls"``   : `statsmodels.regression.linear_model.GLS`
            - ``"statsmodels_glm"``   : `statsmodels.genmod.generalized_linear_model.GLM`
            - ``"linear"``            : `statsmodels.regression.linear_model.OLS`
            - ``"elastic_net"``       : `sklearn.linear_model.ElasticNetCV`
            - ``"ridge"``             : `sklearn.linear_model.RidgeCV`
            - ``"lasso"``             : `sklearn.linear_model.LassoCV`
            - ``"sgd"``               : `sklearn.linear_model.SGDRegressor`
            - ``"lars"``              : `sklearn.linear_model.LarsCV`
            - ``"lasso_lars"``        : `sklearn.linear_model.LassoLarsCV`
            - ``"rf"``                : `sklearn.ensemble.RandomForestRegressor`
            - ``"gradient_boosting"`` : `sklearn.ensemble.GradientBoostingRegressor`

        See `~greykite.algo.common.ml_models.fit_model_via_design_matrix`
        for the sklearn and statsmodels classes that implement these methods, and their parameters.

        "linear" is the same as "statsmodels_ols", because `statsmodels.regression.linear_model.OLS`
        is more stable than `sklearn.linear_model.LinearRegression`.
    sample_weight : `numpy.array` or None, default None
        The vector of weights to be used in weighted models.
        These weights will be used to weigh each loss potentially differently.
    fit_algorithm_params : `dict` or None, default None
        Parameters passed to the requested ``fit_algorithm``.
        If None, uses the defaults defined in this function.

    Returns
    -------
    ml_model : `class`
        a trained predictive model with available predict method
    """
    fit_algorithm_dict = {
        "statsmodels_ols": sm.OLS,  # ordinary least squares
        "statsmodels_wls": sm.WLS,  # weighted least squares
        "statsmodels_gls": sm.GLS,  # generalized least squares
        "statsmodels_glm": sm.GLM,  # generalized linear models
        # "linear" has been redirected to statsmodels OLS instead of sklearn LinearRegression
        # We've found sklearn LinearRegression's solution to be unstable under some cases.
        # The reason could be that sklearn calls lapack backend that depends on the build environment.
        # statsmodels uses simple QR decomposition/pseudo inverse to compute the solution,
        # and provides stabler solutions.
        "linear": sm.OLS,
        "elastic_net": ElasticNetCV,
        "ridge": RidgeCV,
        "lasso": LassoCV,
        "sgd": SGDRegressor,  # fits linear, elastic_net, ridge, lasso via SGD. Default is ridge with alpha = 0.0001
        "lars": LarsCV,
        "lasso_lars": LassoLarsCV,
        "rf": RandomForestRegressor,
        "gradient_boosting": GradientBoostingRegressor  # only method that supports quantile loss
    }

    # for our purposes, we may want different defaults from those provided in the classes
    # sets the default `cv` and `n_estimators`
    default_fit_algorithm_params = {
        "statsmodels_ols": dict(),
        "statsmodels_wls": dict(),
        "statsmodels_gls": dict(),
        "statsmodels_glm": dict(family=sm.families.Gamma()),  # default is gamma distribution
        "linear": dict(),
        "elastic_net": dict(cv=5),
        "ridge": dict(cv=5, alphas=np.logspace(-5, 5, 100)),  # by default RidgeCV only has 3 candidate alphas, not enough
        "lasso": dict(cv=5),
        "sgd": dict(),
        "lars": dict(cv=5),
        "lasso_lars": dict(cv=5),
        "rf": dict(n_estimators=100),
        "gradient_boosting": dict()
    }

    # Re-standardizes the weights so that they sum up to data length
    # Note that in the case of no weights, each weight will be 1,
    # which also sums up to data length
    if sample_weight is not None:
        if fit_algorithm not in ["ridge", "statsmodels_wls"]:
            raise ValueError(
                "sample weights are passed. "
                f"However {fit_algorithm} does not support weighted regression.")
        sample_weight = len(sample_weight) * sample_weight / sum(sample_weight)

    if fit_algorithm not in fit_algorithm_dict.keys():
        raise ValueError(f"The fit algorithm requested was not found: {fit_algorithm}. "
                         f"Must be one of {list(fit_algorithm_dict.keys())}")

    # overwrites default params with those provided by user
    params = default_fit_algorithm_params.get(fit_algorithm, {})
    if fit_algorithm_params is not None:
        params.update(fit_algorithm_params)

    # ``ml_model`` refers to fitted machine-learning model object
    if "statsmodels" in fit_algorithm or fit_algorithm == "linear":
        if fit_algorithm == "statsmodels_wls" and sample_weight is not None:
            ml_model = fit_algorithm_dict[fit_algorithm](
                endog=y_train,
                exog=x_train,
                weights=sample_weight,
                **params)
        else:
            ml_model = fit_algorithm_dict[fit_algorithm](
                endog=y_train,
                exog=x_train,
                **params)
        ml_model = ml_model.fit()
        # Adds .coef_ and .intercept_ to statsmodels, so we could fetch parameters from .coef_ for all models.
        # Intercept is already included in params, setting .intercept_=0 in case it is needed.
        ml_model.coef_ = ml_model.params
        ml_model.intercept_ = 0.
    else:
        ml_model = fit_algorithm_dict[fit_algorithm](**params)
        if fit_algorithm == "ridge":
            ml_model.fit(
                X=x_train,
                y=y_train,
                sample_weight=sample_weight)
        else:
            ml_model.fit(
                X=x_train,
                y=y_train)

    return ml_model


[docs]def fit_ml_model( df, model_formula_str=None, fit_algorithm="linear", fit_algorithm_params=None, y_col=None, pred_cols=None, min_admissible_value=None, max_admissible_value=None, uncertainty_dict=None, normalize_method="min_max", regression_weight_col=None): """Fits predictive ML (machine learning) models to continuous response vector (given in ``y_col``) and returns fitted model. Parameters ---------- df : pd.DataFrame A data frame with the response vector (y) and the feature columns (``x_mat``). model_formula_str : str The prediction model formula string e.g. "y~x1+x2+x3*x4". This is similar to R formulas. See https://patsy.readthedocs.io/en/latest/formulas.html#how-formulas-work. fit_algorithm : `str`, optional, default "linear" The type of predictive model used in fitting. See `~greykite.algo.common.ml_models.fit_model_via_design_matrix` for available options and their parameters. fit_algorithm_params : `dict` or None, optional, default None Parameters passed to the requested fit_algorithm. If None, uses the defaults in `~greykite.algo.common.ml_models.fit_model_via_design_matrix`. y_col : str The column name which has the value of interest to be forecasted If the model_formula_str is not passed, ``y_col`` e.g. ["y"] is used as the response vector column pred_cols : List[str] The names of the feature columns If the ``model_formula_str`` is not passed, ``pred_cols`` e.g. ["x1", "x2", "x3"] is used as the design matrix columns min_admissible_value : Optional[Union[int, float, double]] the minimum admissible value for the ``predict`` function to return max_admissible_value : Optional[Union[int, float, double]] the maximum admissible value for the ``predict`` function to return uncertainty_dict : `dict` or None If passed as a dictionary an uncertainty model will be fit. The items in the dictionary are: ``"uncertainty_method"`` : `str` the title of the method as of now only "simple_conditional_residuals" is implemented which calculates CIs by using residuals ``"params"`` : `dict` A dictionary of parameters needed for the ``uncertainty_method`` requested normalize_method : `str` or None, default "min_max" If a string is provided, it will be used as the normalization method in `~greykite.common.features.normalize.normalize_df`, passed via the argument ``method``. Available options are: "min_max", "statistical". If None, no normalization will be performed. See that function for more details. regression_weight_col : `str` or None, default None The column name for the weights to be used in weighted regression version of applicable machine-learning models. Returns ------- trained_model : `dict` Trained model dictionary with keys: ``"ml_model"`` : A trained model with predict method ``"uncertainty_model"`` : `dict` The returned uncertainty_model dict from `~greykite.algo.uncertainty.conditional.conf_interval.conf_interval`. """ # build model matrices res = design_mat_from_formula( df=df, model_formula_str=model_formula_str, y_col=y_col, pred_cols=pred_cols) y = res["y"] x_mat = res["x_mat"] y_col = res["y_col"] x_design_info = res["x_design_info"] normalize_df_func = None if normalize_method is not None: if "Intercept" in (x_mat.columns): cols = [col for col in list(x_mat.columns) if col != "Intercept"] else: cols = list(x_mat.columns) normalize_info = normalize_df( df=x_mat[cols], method=normalize_method, drop_degenerate_cols=False, replace_zero_denom=True) x_mat[cols] = normalize_info["normalized_df"] x_mat = x_mat.fillna(value=0) normalize_df_func = normalize_info["normalize_df_func"] sample_weight = None if regression_weight_col is not None: if df[regression_weight_col].min() < 0: raise ValueError( "Weights can not be negative. " f"The column {regression_weight_col} includes negative values.") sample_weight = df[regression_weight_col] # prediction model generated by using all observed data ml_model = fit_model_via_design_matrix( x_train=x_mat, y_train=y, fit_algorithm=fit_algorithm, fit_algorithm_params=fit_algorithm_params, sample_weight=sample_weight) # uncertainty model is fitted if uncertainty_dict is passed uncertainty_model = None if uncertainty_dict is not None: uncertainty_method = uncertainty_dict["uncertainty_method"] if uncertainty_method == "simple_conditional_residuals": # reset index to match behavior of predict before assignment new_df = df.reset_index(drop=True) (new_x_mat,) = patsy.build_design_matrices( [x_design_info], data=new_df, return_type="dataframe") if normalize_df_func is not None: if "Intercept" in list(x_mat.columns): cols = [col for col in list(x_mat.columns) if col != "Intercept"] else: cols = list(x_mat.columns) new_x_mat[cols] = normalize_df_func(new_x_mat[cols]) new_x_mat = new_x_mat.fillna(value=0) new_df[f"{y_col}_pred"] = ml_model.predict(new_x_mat) new_df["fit_residual"] = new_df[y_col] - new_df[f"{y_col}_pred"] # re-assign some param defaults for function conf_interval # with values best suited to this case conf_interval_params = { "quantiles": [0.025, 0.975], "sample_size_thresh": 10} if uncertainty_dict["params"] is not None: conf_interval_params.update(uncertainty_dict["params"]) uncertainty_model = conf_interval( df=new_df, value_col=y_col, residual_col="fit_residual", min_admissible_value=min_admissible_value, max_admissible_value=max_admissible_value, **conf_interval_params) else: raise NotImplementedError( f"uncertainty method: {uncertainty_method} is not implemented") # We get the model summary for a subset of models # where summary is available (statsmodels module), # or summary can be constructed (a subset of models from sklearn). ml_model_summary = None if "statsmodels" in fit_algorithm: ml_model_summary = ml_model.summary() elif hasattr(ml_model, "coef_"): var_names = list(x_mat.columns) coefs = ml_model.coef_ ml_model_summary = pd.DataFrame({ "variable": var_names, "coef": coefs}) trained_model = { "x_design_info": x_design_info, "ml_model": ml_model, "uncertainty_model": uncertainty_model, "ml_model_summary": ml_model_summary, "y_col": y_col, "x_mat": x_mat, "min_admissible_value": min_admissible_value, "max_admissible_value": max_admissible_value, "normalize_df_func": normalize_df_func, "regression_weight_col": regression_weight_col} if uncertainty_dict is None: fitted_df = predict_ml( fut_df=df, trained_model=trained_model)["fut_df"] else: fitted_df = predict_ml_with_uncertainty( fut_df=df, trained_model=trained_model)["fut_df"] trained_model["fitted_df"] = fitted_df return trained_model
def predict_ml( fut_df, trained_model): """Returns predictions on new data using the machine-learning (ml) model fitted via ``fit_ml_model``. :param fut_df: `pd.DataFrame` Input data for prediction. Must have all columns used for training, specified in ``model_formula_str`` or ``pred_cols`` :param trained_model: `dict` A trained model returned from ``fit_ml_model`` :return: `dict` A dictionary with following keys - "fut_df": `pd.DataFrame` Input data with ``y_col`` set to the predicted values - "x_mat": `patsy.design_info.DesignMatrix` Design matrix of the predictive model """ y_col = trained_model["y_col"] ml_model = trained_model["ml_model"] x_design_info = trained_model["x_design_info"] min_admissible_value = trained_model["min_admissible_value"] max_admissible_value = trained_model["max_admissible_value"] # reset indices to avoid issues when adding new cols fut_df = fut_df.reset_index(drop=True) (x_mat,) = patsy.build_design_matrices( [x_design_info], data=fut_df, return_type="dataframe") if trained_model["normalize_df_func"] is not None: if "Intercept" in list(x_mat.columns): cols = [col for col in list(x_mat.columns) if col != "Intercept"] else: cols = list(x_mat.columns) x_mat[cols] = trained_model["normalize_df_func"](x_mat[cols]) x_mat = x_mat.fillna(value=0) y_pred = ml_model.predict(x_mat) if min_admissible_value is not None or max_admissible_value is not None: y_pred = np.clip( a=y_pred, a_min=min_admissible_value, a_max=max_admissible_value) fut_df[y_col] = y_pred.tolist() return { "fut_df": fut_df, "x_mat": x_mat} def predict_ml_with_uncertainty( fut_df, trained_model): """Returns predictions and prediction intervals on new data using the machine-learning (ml) model fitted via ``fit_ml_model`` and the uncertainty model fitted via ``greykite.algo.uncertainty.conditional.conf_interval.conf_interval`` :param fut_df: `pd.DataFrame` Input data for prediction. Must have all columns specified by ``model_formula_str`` or ``pred_cols`` :param trained_model: `dict` A trained model returned from ``fit_ml_model`` :return: `dict` A dictionary with following keys - "fut_df": `pd.DataFrame` Input data with ``y_col`` set to the predicted values - "x_mat": `patsy.design_info.DesignMatrix` Design matrix of the predictive model """ # gets point predictions fut_df = fut_df.reset_index(drop=True) y_col = trained_model["y_col"] pred_res = predict_ml( fut_df=fut_df, trained_model=trained_model) y_pred = pred_res["fut_df"][y_col] x_mat = pred_res["x_mat"] fut_df[y_col] = y_pred.tolist() # apply uncertainty model pred_df_with_uncertainty = predict_ci( fut_df, trained_model["uncertainty_model"]) # add uncertainty column to df pred_df_with_uncertainty.reset_index(drop=True, inplace=True) fut_df.reset_index(drop=True, inplace=True) fut_df[f"{y_col}_quantile_summary"] = ( pred_df_with_uncertainty[f"{y_col}_quantile_summary"]) fut_df[ERR_STD_COL] = pred_df_with_uncertainty[ERR_STD_COL] return { "fut_df": fut_df, "x_mat": x_mat}
[docs]def fit_ml_model_with_evaluation( df, model_formula_str=None, y_col=None, pred_cols=None, fit_algorithm="linear", fit_algorithm_params=None, ind_train=None, ind_test=None, training_fraction=0.9, randomize_training=False, min_admissible_value=None, max_admissible_value=None, uncertainty_dict=None, normalize_method="min_max", regression_weight_col=None): """Fits prediction models to continuous response vector (y) and report results. Parameters ---------- df : `pandas.DataFrame` A data frame with the response vector (y) and the feature columns (``x_mat``) model_formula_str : `str` The prediction model formula e.g. "y~x1+x2+x3*x4". This is similar to R language (https://www.r-project.org/) formulas. See https://patsy.readthedocs.io/en/latest/formulas.html#how-formulas-work. y_col : `str` The column name which has the value of interest to be forecasted If the ``model_formula_str`` is not passed, ``y_col`` e.g. ["y"] is used as the response vector column pred_cols : `list` [`str`] The names of the feature columns If the ``model_formula_str`` is not passed, ``pred_cols`` e.g. ["x1", "x2", "x3"] is used as the design matrix columns fit_algorithm : `str`, optional, default "linear" The type of predictive model used in fitting. See `~greykite.algo.common.ml_models.fit_model_via_design_matrix` for available options and their parameters. fit_algorithm_params : `dict` or None, optional, default None Parameters passed to the requested fit_algorithm. If None, uses the defaults in `~greykite.algo.common.ml_models.fit_model_via_design_matrix`. ind_train : `list` [`int`] The index (row number) of the training set ind_test : `list` [`int`] The index (row number) of the test set training_fraction : `float`, between 0.0 and 1.0 The fraction of data used for training This is invoked if ind_train and ind_test are not passed If this is also None or 1.0, then we skip testing and train on the entire dataset randomize_training : `bool` If True, then the training and the test sets will be randomized rather than in chronological order min_admissible_value : Optional[Union[int, float, double]] The minimum admissible value for the ``predict`` function to return max_admissible_value : Optional[Union[int, float, double]] The maximum admissible value for the ``predict`` function to return uncertainty_dict: `dict` or None If passed as a dictionary an uncertainty model will be fit. The items in the dictionary are: ``"uncertainty_method"`` : `str` the title of the method as of now only "simple_conditional_residuals" is implemented which calculates CIs by using residuals ``"params"`` : `dict` A dictionary of parameters needed for the ``uncertainty_method`` requested normalize_method : `str` or None, default "min_max" If a string is provided, it will be used as the normalization method in `~greykite.common.features.normalize.normalize_df`, passed via the argument ``method``. Available options are: "min_max", "statistical". If None, no normalization will be performed. See that function for more details. regression_weight_col : `str` or None, default None The column name for the weights to be used in weighted regression version of applicable machine-learning models. Returns ------- trained_model : `dict` Trained model dictionary with the following keys. "ml_model": A trained model object "summary": Summary of the final model trained on all data "x_mat": Feature vectors matrix used for training of full data (rows of ``df`` with NA are dropped) "y": Response vector for training and testing (rows of ``df`` with NA are dropped). The index corresponds to selected rows in the input ``df``. "y_train": Response vector used for training "y_train_pred": Predicted values of ``y_train`` "training_evaluation": score function value of ``y_train`` and ``y_train_pred`` "y_test": Response vector used for testing "y_test_pred": Predicted values of ``y_test`` "test_evaluation": score function value of ``y_test`` and ``y_test_pred`` "uncertainty_model": `dict` The returned uncertainty_model dict from `~greykite.algo.uncertainty.conditional.conf_interval.conf_interval`. "plt_compare_test": plot function to compare ``y_test`` and ``y_test_pred``, "plt_pred": plot function to compare ``y_train``, ``y_train_pred``, ``y_test`` and ``y_test_pred``. """ # to avoid pandas unnecessary warnings due to chain assignment pd.options.mode.chained_assignment = None # dropping NAs if df.isnull().values.any(): nrows_original = df.shape[0] df = df.dropna(subset=df.columns) # preserves index nrows = df.shape[0] warnings.warn( f"The data frame included {nrows_original-nrows} row(s) with NAs which were removed for model fitting.", UserWarning) if nrows <= 2: raise ValueError( f"Model training requires at least 3 observations, but the dataframe passed " f"to training has {nrows} rows after removing NAs." f"Sometimes this can be caused by unnecessary columns in your training data " f"which contain NAs. Make sure to remove unnecessary columns from data before " f"passing it to the function.") # an internal function for fitting model # this is wrapped into a function since we can do evaluations trained_model = fit_ml_model( df=df, model_formula_str=model_formula_str, fit_algorithm=fit_algorithm, fit_algorithm_params=fit_algorithm_params, y_col=y_col, pred_cols=pred_cols, min_admissible_value=min_admissible_value, max_admissible_value=max_admissible_value, uncertainty_dict=uncertainty_dict, normalize_method=normalize_method, regression_weight_col=regression_weight_col) # we store the obtained ``y_col`` from the function in a new variable (``y_col_final``) # this is done since the input y_col could be None # in which case we extract ``y_col`` from the formula (``model_formula_str``) y_col_final = trained_model["y_col"] # determining what should be the training and test sets n = len(df) skip_test = False if ind_train is not None and ind_test is not None: if max(ind_train) >= min(ind_test): raise Exception("Test set indices should start after training set indices.") elif max(ind_test) >= n: warnings.warn( "Testing set indices exceed the size of the dataset." "Setting max index of the Test set " "equal to the max index of the dataset.") ind_test = [x for x in ind_test if x < n] elif ind_train is None and training_fraction is not None and training_fraction < 1.0: k = round(n * training_fraction) k = int(k) ind_train = range(k) if randomize_training: ind_train = random.sample(range(n), k) ind_train = np.sort(ind_train) ind_test = list(set(range(n)) - set(ind_train)) ind_test = np.sort(ind_test) else: ind_train = range(n) ind_test = [] skip_test = True df_train = df.iloc[ind_train] df_test = df.iloc[ind_test] y_train = df_train[y_col_final] y_test = df_test[y_col_final] if skip_test: y_test_pred = None test_evaluation = None plt_compare_test = None y_train_pred = predict_ml( fut_df=df, trained_model=trained_model, )["fut_df"][y_col_final].tolist() def plt_pred(): plt.plot(ind_train, y_train, label="full data", alpha=0.4) plt.plot(ind_train, y_train_pred, label="fit", alpha=0.4) plt.xlabel("index") plt.ylabel("value") plt.title("fit on the whole dataset") plt.legend() else: # validation: fit with df_train only and predict with df_test # first remove responses from df_test df_test[y_col_final] = None trained_model_tr = fit_ml_model( df=df_train, model_formula_str=model_formula_str, fit_algorithm=fit_algorithm, y_col=y_col, pred_cols=pred_cols, min_admissible_value=min_admissible_value, max_admissible_value=max_admissible_value, uncertainty_dict=uncertainty_dict, normalize_method=normalize_method, regression_weight_col=regression_weight_col) y_train_pred = predict_ml( fut_df=df_train, trained_model=trained_model_tr)["fut_df"][y_col_final].tolist() y_test_pred = predict_ml( fut_df=df_test, trained_model=trained_model_tr)["fut_df"][y_col_final].tolist() test_evaluation = calc_pred_err( y_true=y_test, y_pred=y_test_pred) test_evaluation[R2_null_model_score] = r2_null_model_score( y_true=y_test, y_pred=y_test_pred, y_pred_null=y_train.mean(), y_train=None) def plt_compare_test(): plt.scatter(y_test, y_test_pred, color="red", alpha=0.05) plt.xlabel("observed") plt.ylabel("predicted") plt.title("test set") def plt_pred(): plt.plot(ind_train, y_train, label="train", alpha=0.4) plt.plot(ind_train, y_train_pred, label="fit", alpha=0.4) plt.plot(ind_test, y_test, label="observed test set", alpha=0.4) plt.plot(ind_test, y_test_pred, label="predicted test set", alpha=0.4) plt.xlabel("index") plt.ylabel("value") plt.title("training and test fits") plt.legend() training_evaluation = calc_pred_err( y_true=y_train, y_pred=y_train_pred) training_evaluation[R2_null_model_score] = r2_null_model_score( y_true=y_train, y_pred=y_train_pred, y_pred_null=y_train.mean(), y_train=None) trained_model["summary"] = None trained_model["y"] = df[y_col_final] trained_model["y_train"] = y_train trained_model["y_train_pred"] = y_train_pred trained_model["training_evaluation"] = training_evaluation trained_model["y_test"] = y_test trained_model["y_test_pred"] = y_test_pred trained_model["test_evaluation"] = test_evaluation trained_model["plt_compare_test"] = plt_compare_test trained_model["plt_pred"] = plt_pred return trained_model
def breakdown_regression_based_prediction( ml_model, x_mat, grouping_regex_patterns_dict, add_intercept_group=True, remainder_group_name="OTHER"): """Given a regression based ML model (``ml_model``) and a design matrix (``x_mat``), and a string based grouping rule (``grouping_regex_patterns_dict``) for the design matrix columnns, constructs a dataframe with columns corresponding to the weighted (according to ML model regression coefficient) sum of the columns in each group. Note that if a variable/column is already picked in a step, it will be taken out from the columns list and will not appear in next groups. Parameters ---------- ml_model : `sklearn.base.BaseEstimator` sklearn ML estimator/model of various form. We require this object to have ``.coef_`` and ``.intercept`` attributes. x_mat :`pandas.DataFrame` Design matrix of the regression model grouping_regex_patterns_dict : `dict` {`str`: `str`} A dictionary with group names as keys and regexes as values. This dictinary is used to partition the columns into various groups add_intercept_group : `bool`, default True Determines if a group should be created to include the intercept value. This is helpful to be set to be True if we like the breakdown to sum up to the predictions. remainder_group_name : `str`, default "OTHER" In case some columns are left and not assigned to any groups, a group with this name will be added to breakdown dataframe and includes the weighted some of the remaining columns. Returns ------- result : `dict` A dictionary with the following keys. - "breakdown_df" :`pandas.DataFrame` A dataframe which includes the sums for each group - "column_grouping_result" : `dict` A dictionary which includes information for the generated groups. See `~greykite.common.python_utils.group_strs_with_regex_patterns` for more details. """ # The dataframe which includes the group sums breakdown_df = pd.DataFrame() ml_model_coef = ml_model.coef_ intercept = ml_model.intercept_ x_mat_weighted = x_mat * ml_model_coef data_len = len(x_mat) cols = list(x_mat.columns) if add_intercept_group: breakdown_df["Intercept"] = np.repeat(intercept, data_len) if "Intercept" in cols: breakdown_df["Intercept"] += x_mat_weighted["Intercept"] # If Intercept appear in the columns, we remove it # Note that this column was utilized and added to intercept, # if ``add_intercept_group`` is true. # And it is not needed anymore in regardless of ``add_intercept_group`` value. if "Intercept" in cols: del x_mat_weighted["Intercept"] cols.remove("Intercept") regex_patterns = list(grouping_regex_patterns_dict.values()) group_names = list(grouping_regex_patterns_dict.keys()) column_grouping_result = group_strs_with_regex_patterns( strings=cols, regex_patterns=regex_patterns) col_groups = column_grouping_result["str_groups"] remainder = column_grouping_result["remainder"] assert len(col_groups) == len(grouping_regex_patterns_dict) for i, group_name in enumerate(group_names): group_elements = col_groups[i] if len(group_elements) != 0: breakdown_df[group_name] = x_mat_weighted[group_elements].sum(axis=1) else: breakdown_df[group_name] = 0.0 if len(remainder) != 0: breakdown_df[remainder_group_name] = x_mat_weighted[remainder].sum(axis=1) return { "breakdown_df": breakdown_df, "column_grouping_result": column_grouping_result }